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ABSTRACT
We show that a functional equation in EP;
t

x(t) = [ W(t,s)x(s)ds

with piecewise continuous m X m matrix kernel W(t,s) satisfying, for
T, R, u>0

Wit + 7T, 8+ T) =W(t,s) ,

Wit,s)l < 9e P(t78) ¢ s real

admits, for each 8 < u, a decomposition, applicable to a wide class of
solutions x(t) for t » 0,

x(t) = Xp(t) + Xg(t)

where, for some B = B(B),

Ixe(t)l < Be-Bt, t >0

and xp(t) is a linear combination of "Floguet type" solutions

t3e o) ,q(> 0) € 2, A € C, Re()) > =B ,

p(t) Dbeing a continuous n-vector function such that

p(t + T) = p(t) .

*Department of *lathematics, University of Wisconsin-Madison, Madison, WI
53706. This research was completed while the author was visiting at the
University of Florida, Gainesville.

Sponsored by the United States Army under Contract No. DAAG29-80-C~0041 and in
part by the Air Force Office of Scientific Research under Grant No. 84-0088,
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The theorem is proved by converting the above equations to a convolution type

linear recursion equation
0
) OxXy4y = 0
k= =00

in q:[O,T] and studying this equation by transform methods. 1In the process

we examine some general properties of equations
[ J
) OxXk+y = 0
Kk==0

within the same transform framework.

AMS (MOS) Subject Classifications: 39A10, 39A11, 39A12, 44A10, 44A50,
34K20, 34K30

Key Words: Floquet theory, linear recursion equations, difference equations,
periodic systems, delay systems, integral equations
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SIGNIFICANCE AND EXPLANATION
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This report provides the theoretical background for oeur- earlier report

L ATSR#2T14, J;;equency/Per1od Estimation and Adaptive Rejection of Sinusoidal

Disturbances” ). It also lays the foundation for a new type of transform

analysis for linear recursion equations which appears to be quite useful in
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A FLOQUET DECOMPOSITION FOR VOLTERRA EQUATIONS WITH PERIODIC
: KERNEL AND A TRANSFORM APPROACH TO LINEAR RECURSION EQUATIONS

David L. Russell®*
MIPAC Facility Document No. 2

1. STATEMENT OF PRINCIPAL RESULTS

The present work developed, originally, in a supporting role in connection with the
stability of certain adaptive frequency rejection procedures for linear control systems
((6)), where small variations in the estimate, %(t), of the period, T, of the incoming
disturbance, were seen to satisfy an equation of the type appearing in Theorem 1, below,
with m = 1. The specific question of interest concerned whether or not the asymptotic
stability of such a system can be decided on the basis of knowledge of "Floquet type"
solutions

t3e Ep(t)
of the system, where q is a non-negative integer, ) a complex number, and p(t) a
continuous Te-periodic m-vector function. This is an important question for applications
because such solutions are the easiest to identify by computational procedures. The

question is answered in the affirmative by

Theorem 1. Consider the vector functional equation in E™:

t
x(t) = [ W(t,s)x(s)ds (1.2)

=00

where W(t,s) is a piecewise continuous m x m matrix function satisfying

Wit,s)l < e ¥(t8) o gct, (1.3)

for positive numbers 2, u and is periodic in the sense that

Wit + T, 8 + T) = W(t,s) (1.4)

*Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706. This
research was completed while the author was visiting at the University of Florida,
Gainesville.

Spongored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by the
Air Force Office of Scientific Research under Grant No. 84~0088.
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for a certain positive minimal period T. Then, given any real v < i, a solution x(t)

of (1.2) corresponding to an initial "history"

x(~s8), 0< 8 < =™,

with

x(-s)t < e, 0¢<s <= (1.5)

for some positive £ and real v < y (which may depend on x) can be written as

x(t) = xp(t) + xﬂ(t) ’ (1.6)

where xp(t) is a finite linear combination of Floquet type solutions with Re(A) > -f

and

Ixg(t)1 < e P, to0 (1.7)

where B is a positive number:

B =5,(8)(] ix(-s)1las) V2 .
0

In particular, since B may be taken to be positive,

lim Ix(t)d = 0

oo

for all solutions x(t) as described if and only if Re()A) < 0 for all Flogquet type

solutions tletp(t)-

Remarks. The condition (1.5), or something similar, is necessary to ensure the convergence
of the integral in (1.2). It is trivially satisfied, of course, if x(-s) = 0 for
8 > s, for some positive 8;, normally the case in applications.

Theorem 1 is proved as an application of another result, Theorem 2 below, which
concerns linear recursion equations of convolution type, i.e., with constant
coefficients. To set the stage for this result, let X be a Banach space with norm 1 1
and

x = {x [-= <k <=}

-2-
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a sequence of vectors in X having exponentially bounded growth as k tends to -=,
i.e., there exist positive numbers M,Y
<M, k= 0,-1,-2,-3,... . (1.8)

Suppose further that &%, k =0,-1,-2,-3,... are bounded operators on X such that

) IQkka < » (1.9)

k==

for some p satisfying 0 < p < Y. Defining the bounded operator valued functions Q(z)
by

Az) = ) QX (1.10)
we see that Q(z) is an analytic operator valued function for |z| > p« Equally well

§(z) = ) xz (1.11)
is an analytic X-vector valued function for |z| < Y. We let D be a circle of radius
d centered at 0 with Y > d > p and we let C be a similar circle of radius c¢ > d,
both circles oriented positively. Using certain results about the “"transforms"

Q(z), E7(2), which we will develop in Sections (2) and (3), we are able to prove

Theorem 2. Let {xk|-~ < k < ®»} satisfy the convolution equation

L Quxkey =00 3 = 12,3,..0 (1.12)
k==00

with X, € X satisfying (1.8) for k < 0. Let Qg be nonsingular and assume that Q(z)

is "regqular" in the sense that its singular points ¢, points such that Q(C)-1 does not

exist as a bounded operator on X, have no cluster points in |z| > p and are such that

the null space of Q(f) is finite dimensional in each case. let D, as described above,

be situated so as not to pass through any singular point f of Q(z) and let C be

-3~




selected so that c > |f| for all singular points ¢ of Q(z). Then, given any

6, ¢>0>p, and S a positively oriented circle, centered at 0, of radius o, we

may assume without loss of generality that d < ¢ and we have, for k = 1,2,3,...

X = U f zk'1Q(z)'1q(z)dz + E%T £ zk-1Q(Z)'1q(z)dz H Xk ,F + xk’o e (1.13)

2ni c=s
where
q(z) = 3%; é 915%5;1%195, lz| > a. (1.14)
As a consequence we have, for some N = N(o) > 0,
I b S NS, ko= 1,23, (1.15)
and
Xg,F = ) Res(zk'1Q(z)-1q(z)|z_C P (1.16)

zez(c,s)

where 2Z(C,S) is the set of singular points of Q(z) between C and S. If the

dimension of the null space of Q(§) is Ve then m—zs(zk-b(z).“ﬂl(z))|z.,,c is a linear

combination of solutions of (1.12) having the form

kuckp. k=1,23... (1.17)

where u is an integer, 0 < u < v and p is a non-zero vector in X which is a

C’

generalized eigenvector in the sense that

o™ (Z)p =0, m=0,c00n . (1.18)

iIn particular, if p < 1 and o is selected so that 1> ¢ > p, then

lim kal = 0

k »oo

for all solutions {xk} of (1.12) satisfying (1.8) just in case all of the singular points

¢ of (z) satisfy {z| < 1.

Kemark. A theorem of F. V. Atkinson (see the original paper (1] or the treatment by T.

Kato in [4]) shows that Q(z), with Q4 nonsingular, is regular, as defined, if the Qy

are compact k = ~1,-2,=-3,.00 &
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In Section 2 we develop the machinery necessary to prove Theorem 2, but in a slightly
o«
more general getting (allowing equations of the form Z Qkxk+j = 0). In Section 3 we
K m—to

prove Theorem 2 and some other results for linear recursion equations of "unilateral®
type. Theorem 1 is proved in Section 4.

Theorem 1 extends to a class of functional equations involving an infinite delay
results already presented in [3] for certain equations with finite delay, namely those of

neutral and retarded type. It is likely that a modification of the methods used here would

provide alternative proofs of those theorems.

-5-
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2. A TRANSFORM THEORY FOR LINEAR RECURSION EQUATIONS

Here, as indicated earlier, we take a somewhat more general point of view than what is
minimally required in order to prove Theorem 2. Let X be a Banach space as in Section 1
and let us consider sequences

x = {xk|-¢ <k < =}
of vectors in X having exponentially bounded growth as k tends to infinity in both

directions; there are positive numbers M%, M . Y+, Y , with Y+ ’ Y;E such that

1< MTyR, k= 1,23, (2.1)
1< K (yOX, k=0,-1,-2,-3,... . (2.2)
Along with such sequences of vectors we consider sequences
Q= {g |-= <k < =} (2.3)
of bounded operators Q : X + X which satisfy inequalities
o

L org e <.,
=1

(2.4)
0 X N 1
LorKe” (= ) Mg 1 — k) <o |,
k== k=0 (p )
where D+'D- are positive numbers with
ot>yr sy > >0, (2.5)
From this it is clear that the convolution product defined by
o0
Qe x)g = ] Quxg
k==
is convergent for every integer £ and we may consider the equation
Qax=f (2.6)

where
£ = (£ ]|-= ¢k <=}

is also a sequence in X with certain properties to be discussed subsequently.

-6-




In agreement with standard usage we define the "z-transform", or discrete Laplace

transform, of x by

b oxz® (= gtz 2z > Y,
E(x,2z) = (2.7)

]
- ) x_ 2% (2 €T(x2)), 2| <Y,

when x = [xk} is clear from the context we will simply write E(z). Clearly y(z) is
analytic for |[z| > Y' and for [z] < Y . In certain instances £(z), as defined in one
of tl»se regions, is an analytic continuation of £(z) as defined in the other. The most
basic example, for X = E', concerns the sequence

x, = Ak-l, —-» ¢k < ®,
where A 1is a non-zero complex number. Here

v =T = a

and we see that for [z| > [A]

A A 1 1 1
tn =g v v 5+ =2 xR T
z z
while for |z| < lAl
2

1 1 1
g(Z):-X-X_Z--F-”"-T(1-27X)=z-).°

We will see as we proceed that those cases wherein £¥(z) and £ (2), as defined by

(2.7), are analy-ic continuations of each other, correspond, if Q « x = 0, to rather
particular solutions of that equation.
The z-transform 18 readily inverted by taking c* and CT to be circles with

+ - -
positive radii et > v", ¢ <Y, centereda at o, positively oriented, and verifying

that




f 2."1 f E(Z)Z dz, k = 1,2,3,+¢¢ ,

Xk = (2.8)
(z)dz
2"1 f tlz)dz T K = 0,-1,=2,s00
z
If we set
c=ct-c
and use Cauchy's theorem, we see that
s 2—1 / £(2125 Y4z, = (kK <w. (2.9)
(o]

For Q as in (2.3)-(2.5) we define a variety of "discrete Fourier transform"

analytic for P < IZI < D+- There exists, as one wculd expect, an important relationship
between Q(z), £(z) and the z-transform ¢(z) of f when Q,x and f satisfy (2.6).

In order to explain this relationship we need to introduce a certain decomposition which we
will call the "internal-external"” decomposition.

Let D =D - D° be a contour similar to C described above, D'

and D~ having
radii 4% and d'(<d+), respectively. Let h be a complex-valued function defined and

square integrable on D. Let

1 ¢ h(o)d -

h(z) =2Tlf);‘-f—);-§-, lz| > a*, |z| <a, (2.10)
o0 _ 1 h(g)dg .- +
h(z) -—-zué-———c_z, a~ < |z| <at, (2.11)

which we call the exterior and interior functions (relative to the particular contour C)

associated with h, respectively analytic in the exterior of D and the interior of D.

-

~
From familiar results for Fourier series it is easy to see that if De' De are contours of

the same sort as D, lying a distance ¢ in the exterior, interior, respectively, of
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k=1
be holomorphic for |z| > Y. Assuming
0
otz) = ) o,
k==

Qo nonsingular, is holomorphic_ for lz] > 7, 0 <p” <Y, the z-transform £(z) of the

unilateral solution x of Q 4 x =f with initial history x~ is such that the transform

of
xt = g 1 <k <=}
is given bX
+ 1 e e a1 1 (0E (g)a
L Q8) ¢ (glag | 1 - £(e)E (g)dg
§(2) =53 £+ z -3 * oy o) é- z -z (3.2)

where D' and D~ with radii d4* and d~ are selected so that a4t > Y+ and Q(z) is

nonsingular for |z| > d* while p~ <d” <y , and the formula (2.23) is valid for

Izl > a*.

Proof. We first construct the solution in the unilaterally homogeneous case wherein

£ = 0, k= 1,2,3,+.. » Let D~ have radius d as indicated and let us define

+ 1 -
Eo(z) = o1 Q(z)

' Q(Z)E (g)dg
o "¢ )

Since @, is nonsingular, there is a positive number r such that ¢@(z) is nonsingular

be such that c¥ > r and Y >c¢ > p . Let

for |z| >r. Let c=ct-c

Eg(z). lz| > v*
Eol2z) = _ _
£ tz), Jz| < v

and let us compute, for w exterior to C,

-20-
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3. UNILATERAL EQUATIONS AND THE PROOF OF THEOREM 2.

Unilateral equations are equations of the form Q , x = £ wherein
Q= (g |-= < x <=}
has the additional property that
e =0, k>0,

and thus the equation takes the form

4]
L Qke; = £5 -
k==00

We will say that x is a unilateral solution if this equation is valid for
j = 1,2,3,... (otherwise x is a complete solution, if the distinction needs to be made;
up to the present we have referred to complete solutions merely as solutions). We will say

that x is a unilateral homogeneous solution, or just that it is unilaterally

homogeneous, if fj =0 for j = 1,2,3,.0. &

For unilateral equations the natural problem is the initial history problem wherein we
assume that for k = 0,-1,-2,-3,...x, is given a priori. Ordinarily we accept any such
sequence, call it x ., for which £ (z) (cf. (2.7)) is holomorphic for lz} <y,
without being concerned about the values of (Q « x)j for j < 0. The sequence x is
continued for k = 1,2,3,... by enforcing (3.1), for a given f*, i.e.,

{fjlj =1,2,3,...}, for j > 0; to ensure this continuability we assume that 0, is
nonsingular. The problem, then, is to characterize the continuation sequence
"= {xelx = 1,2,3,...}
in terms of x~, £* ana Q. The following theorem does just that, in terms of the

transforms of those sequences.

Theorem 9. let x = {xk|—~ < k € 0} with z transform

be holomorphic for |z| < y= and let

- 19_




points of Q(z) Dbetween the two contours. Thus, as we should expect, there is an

intrinsic relationship between solutions of Q 4 x = 0 and singular points of Q(z).
In order to distinguish the concept of homogeneous solutions as developed here from
the more restricted one to be developed presently, we will refer to solutions x of
Qe x = 0, which means (Q « x)j = 0 for == ¢ j < ® or equivalently, that
T
Q(z)E(z) = 0 (2.33)

for the z-transform, £, of x, as completely homogeneous solutions. If equation (2.33)

is true for an appropriate contour D, for 2z on that contour
P N P
Q(z)E(z) = Q(z)E(z) + Q(z)E(z) = Q(z)E(z) .

Now, for z in the interior of D,

e
Q(z)E(z) .T}II (§)E(E)d
D

g -z

and thus Q(z)E(z), initially defined only for o < |z| < ¥~ ana Y' < |2z| <p*, which
includes D, must, as a consequence of the identity theorem, have the analytic

continuation

Qz)E(c)de

1
Q(z)E(z) = ml{ T -z

throughout the interior of D and thus, in fact, Q(z)E(z) is holomorphic for
- - +
p~ < |z| < p*. since E(z) is holomorphic for |z| < Y~ and for |z| > Y', which

intersects £ < |z| < p+ in two open annuli, we can summarize in

Theorem 8. The sequence x is a completely homogeneous solutions, i.e., (Q * x)j = 0

for -» ¢ j <=, if and only if ¢(z) = Q(z)E(z) is extendable as a holomorphic function

to - < ]z' < p+- If the set of singularities of Q(z) has a connected complement, then

(cf. (2.7)) t*(z) ana £7(z), holomorphic, respectively, in [z| > Y* and |z] <Y7;

are each analytic continuations of the function Q(z)-1W(z) and hence analytic

continuations of each other.

~18-
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for z exterior to D. Then for w between C and D, relative to C,

-1
= glz)n(z)dz _ _ 1 Q(2) Q(g) 6(g)ag
Qlwin(w) = = ‘I: — oz (I: — ]D PR az

-1
1 1 Jaz gig)r 8

1
s-?éc{g(”[z'ﬁ-l~w cow ¢
-1
RIS e lsar
2u£c-wd‘+9(") 211{, w1 0+ Qwintw) - (2.32)

Since Q(w)n(w) is holomorphic on C, we conclude that it is internal relative to C.

Then, for z exterior to C,

1

~ 1 (w) " 2N
ATperm) = o | A QwINtw)aw

= -1 [ NW) - =
(using (2.30), (2.31)) = (J: = aw = n(z) = ([ £)(z)

since n, being external relative to D, is also external relative to C. This completes
the proof of Proposition 7.

Letting C tend to D, we conclude that both HD and Il are projections. We may

D
think of KD as extracting, in view of (Hom) in the proof of Theorem 5 (taking

v(z) = Q(z)E(z)), a "homogeneous” part of £(z) in the sense that

/w\
Q(z)(HDE)(z) =0

~

and thus the sequence X, whose z-transform is (ﬁDE)(Z) satisfies Q , ;D = 0.

-

Correspondingly, HD extracts an "inhomogeneous" part, (HDE)(z), of £(z), for which

d7;7:§;;772) = ¢(z)
and the sequence ;D whose z-transform is (ﬁDE)(z) satisfies Q * x = £f. Proposition 7
shows that, as the contour D expands, the homogeneous part grows larger in the sense that
the range of ﬁc includes that ﬁD when C 1is exterior to D. Whether or not ﬁc and

HD are different, or agree, respectively, depends on whether or not there are singular

.17~
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f Q(z) Q(z)E(z)dz

a -1
- % =1 Q(z) 4¢(z)dz
(HDE)(H) (T = THE) W) e [f)—

L

w~-2z 2ni D w-2

where Q(z)£(z) is the external part of ((z)§(z) relative to any contour K with the
properties described earlier, and, as noted earlier, 6?:727:3 is the internal part of

G(z)E(z) relative to C. Wwhen Q(Z)'1 is holomorphic on C and on K and on the
annular regions between them, which includes D, both ~ and “ can be interpreted
relative to the contour D over which the integration is performed. We will assume this
to be the case for purposes of defining ﬂD and ﬁD as above. Thus ﬁD and ﬁD are
defined entirely with reference to the contour D.

Now let C, unrelated to C in the previous paragraph except that we continue to

assume (2.16), (2.18) hold, be a contour exterior to D, still of the same general type;
c=ct-c. Assuming no singularity of Q(z) 1lies on C either, we can define ﬁc and

-~

ﬂc for the contour C. Then we have

Proposition 7. For w exterior to C

~ o~

(HCHDE)(H) = (HDE)(w) .

Remark. Then also, quite clearly
(HCHDE)(w) = (HCE)(W) ’
for

((1 - ?fc)(x - TTD)f,)(w) = (- W, - T+ Ty
= (1 - TDENw) = (M §)(w)

Proot of Proposition 7. Llet

P g
68(Z) = Q(L)IE(D) (2.30)

relative to D. Then let

)" lecrag

1 -
n(z) -m{) T (M £ (2) (2.31)

-16-
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Let K = K* = K be such that Y <k~ <d” anda da* > k* > Y'. Then

-1
o(z) " "e(2)ae . Q(z) Q(Z)E(L)dg
J W -z 2 I W -z I zZ -3 dz (2.27)

4qn

Now the Cauchy formula gives, for z 1lying between C and K,

1
Q(z)E(zZ) ='§?F£(({ lf() ‘c’f‘z az (2.28)

and then, for w exterior to D,

-1
Q(z)” ¢(2)dz - o(z) Q(C)E(C)dc
2 I W=z 2w1 I w-z l21u. I + Qz)E(2)]az . (2.29)

where we have solved for [ in (2.28) and changed { -z to 2z - { in the denominator of
K
its integrand before substituting into (2.27) to get (2.29). Now, by definition,

-1
1 2f2) QUZ)E(g)dg Q(z) I~
2mi é w -z 2!1 f STz %= 2"1 f Qz)E(z)az

where ~ denotes here the internal functien relative to C. Since w is exterior to D

f Q(z) 'Q(z)E(z)dz

v -z = E(w)

211

and therefore

o) N6(2) Q/()\E(/))
z z + z 2
tw) =gy T3

as claimed, and the proof is complete.

Some interesting results devolve from the equation (2.23) which deserve a few

paragraphs' notice. We define

N
(T £)(w) -_ ; 0(2)"'0(2)8(2)az2
D 2ni v - Z

-15=
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Now, using the formula (2.21) for £(z), still for w in the interior of D,

QWIE(W) = - — T

1 o) " ve) + prena
2 zZ -w
4% C D

-1
U] ate (= - 1 Jas R8T () # 0@
c

"2 D z - zZ~-w z-w
=1
-1 (vig) + ¢(g)idg 1 2(5) (vw(g) + ¢(z))dg
2ni £ T -w ov) 51 é g - : 12.26)

Combining (2.25) with (2.26) we have

TN

-1
otw) " (ww) - QwIEw)) = Q(e) (wlg) + ¢(8))de

1
201 £ T - w

from which we conclude that (2.22) is internal relative to D, as required for the
theorem. Then the formula (2.21) for £&(z) imsmediately gives the result (2.23), for, if

-1 PN
QL) (VL) - Q(L)E(T)) is internal relative to D,

- N
j el - geEen
D £-¢

.

2ni

for z exterior to D. This completes the proof. .
The formula (2.23) is, in fact, valid for all £(z) corresponding to solutions x

of Q o« x = f. Indeed we have

Theorem 6. Let x be any solution of Q o x = £, sgo that Q(z)£(z) = ¢(z), where ¢(z)

is analytic for |z| > Y+ and |z| <Y and Q(z) is analytic for - < |z| < D+. with

the inequalities (2.5) applying. Let D and C be selected so that (2.16), (2.18) are

valid, with no singularity of 0Q(z) occurring on D. Then the formula (2.23) remains

N
valid with Q(z)£(z) denoting the internal part of @(z)g(z) relative to C.

Proof. From Corollary 4 we see that £(z) is also analytic for |z| > Y+ and for

Iz' < y=.

-14-




Proof. For w in the exterior of C, the external part of Q(w)§(w) is

QUW)IE(w) = L f (z)g(z)dz = (from (2.21))

2ni

-~ ) [ oo (REL 2 HEN )ages
[ D

Now
-1
1 IQ IQ(;) $(8) 4 1 Q(z)dz -1
-— a3 = gdz = ~ —5 [ [ == — Q(5)” $(5) g
42c z - 4“zpc(w z)(z - T)
1 (2)” $(%)
=_2iijfg(z)(w_z+z_;)dzgt ¢Cd;-¢(w)
DC
because v -z and Q(z) are holomorphic in the interior of z,

—1- (z)dz =
Ty {:9—-—, — " %)

and ¢ is external relative to D. The same process gives

et e e R B 189) < w2 -
21\1- Iugz'r-{ dzaz 2Iin-cd; ZIijw-zdx 0 (2.24)
Cc D D C
because is holomorphic in the interior of C and ¢ is internal relative to C.
Thus

N
QW) E(w) = $(w)
and this implies Q « x = £ as required.
Now let w lie in the interior of D. Since ¢ is internal relative to C and ¢

is external relative to D

Yiw) =

2!1 L - w

D

-13-




Now, using the formula (2.21) for £(z), still for w in the interior of D,

Q(w)E(w) = -;2; fg(m “';‘1 : $(e)dg o
4 C D

1 )az Q(g) (¢(C) + o)) 4

Z-C z-w zZ-w

e

f (W(g) + ¢(3))dg

I Q(C) (¢(C) + ¢(g))dg
T-w :

- - Q(w) = (2.26)

2!1
Combining (2.25) with (2.26) we have

- P -1
o) T (wiw) - QElw)) = 1 &) (ute) - e(e)I%

ni £ g -w

from which we conclude that (2.22) is internal relative to D, as required for the
theorem. Then the formula (2.21) for £(z) immediately gives the result (2.23), for, if

-1 AN
QL) (W(L) - QUZ)IE(L)) is internal relative to D,

g
f Q(g)” (v(c) - Q(z)E(g)dg _
2!1 z -2

for z exterior to D. This completes the proof.

The formula (2.23) is, in fact, valid for all §(z) corresponding to solutions x

of Q « x = f. Indeed we have

NN
Theorem 6. lLet x be any solution of Q o x = £, 80 that Q(z)&(z) = ¢(z2), where ¢(z)

ig analytic for |z| > Y+ and |z| <Y ana Q(z) is analytic for o < |2| < p*. with

the inequalities (2.5) applying. Let D and C be selected so that (2.16), (2.18) are

valid, with no sinqularity of Q(z) occurring on D. Then the formula (2.23) remains

N
valid with Q(z)§(z) denoting the internal part of ¢(z)£(z) relative to C.

+
Proof. From Corollary 4 we see that £(z) is also analytic for |z| >Y and for

lz] < y-.

-14-

o L




TN ¢ X 3 5 " emmmmm - . o

AL AN R

AN

T, %S e S TR S

B . SO RS

T
»

Proof. For w in the exterior of C, the external part of Q(w)fi(w) is

-l (z)&(z)dz _
QUWIE(W) = — ég—————w — (from (2.21))

-1 =) ~1¢(8) + y(g)
2 é -z £ (o) z -3 ]dcdz

Now
-1
1 / Q(z) jQ(C) P(8) 4 1 Q(z)dz -1
- e = dz = - — [ [ == — Q(2) " ¢(D)ar
"2 c w z D 2 [4 4'2 DC (w z)(z z)
1 II 1 1 (g ) ¢(C)
ot ] [0 gog o3l = a = ¢(w)
2xi DC w -2 z [4 -7
because praran— and Q(z) are holomorphic in the interior of z,

JI[M L) .
C

and ¢ is external relative to D. The same process gives

(2.24)

- Q(i)- q;»(c) agdz
c

1 1
- [ Y - [ Y
2ni o ¥ 2ni c "

is holomorphic in the interior of C and ¢ is internal relative to C.

because

Thus

i
QUWIE(w) = ¢(w)

and this implies Q 4o x = £ as required.

Now let w lie in the interior of D. Since ¢ is internal relative to C and ¢

is external relative to D

S .1'_5_ ._1. (P(g) + ¢(g)iag
W) = ! ac {: T . (2.25)

-13-
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‘l
\
bs
*
- - -}’j '
y Yy = Q x
L Kewe Kk “k+L
-
[+
:‘} and then
3
'S + - S .
. Yo m¥gt ¥y = L gxm @t x)y =, .
jn-ﬂ
S
N Then since ¢(z) and n(z), given by (2.17), are both external functions relative to
~: D, (2.15) follows and the proof is complete.
. Proposition 3 tells us, given Q and x, a fairly elegant way to compute
N f = Q¢ * x. Now let us reverse the process. Let us sup, “se that the sequence
.- f = {fk e xl-- < k < ®»} has z-transform ¢(z) external re’'ative to D. What may we then
..-f say about those sequences x = {xk @ X|-» ¢ k ¢ ®}] such that { * x = £? We have
Theorem 5. Assume Q(z) has isolated singularities. let C lie in the extension of D
with no singularity of Q(z) 1lying on D. Let f have z-transform ¢(z) external
relative to D. let 0Q(z), the discrete Fourier transform of {Qk € LIX,X)|-= ¢ k ¢ ®)}
o be analytic for p~ < |z| < p* and let the radii of c*, c”, p*, D~ satisfy (2.16),
": (2.18). let ¥(z) be an arbitrary function interval relative to C. Then the sequence .
N AL ol Y
N
~ {x e %X|-* < k < ®} with z-transform
.
£(z) = =1 [ oeg)” V(&I g, (2.21)
2%i D z -
defined for 2z exterior to D, satisfies
- Q*x=f.,
, Moreover, the function
.- -1 SN
Q(z) “(¥(z) - Q(z)E(z)) (2.22)
_ is internal relative to D and thus, also,
“~
1 1808) + QG
. - - + )E(Z)
£(z) 'ﬁTl{Q“’ ( T Jag (2.23) .
:': where (z)E&(x) denotes the internal part of ¢Q(z){(z) relative to C.

- -12~
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Proof of Proposition 3. We will compute the coefficients Ygo = < 2 <=, of the

expansion of the function
N
n(z) = Q(z)&(z} ,
computed relative to D. To t*is end, let C = ¢t - ¢ be such that the radii,

c™, of ¢t and C”, respectively, satisfy

pt>etsat, o < <ca .
Then
1 -1 1 Q(Z)IE(L) £-1
y -—fn(z)z dz-——ff—-T—dcz dz
L 21|ic 4n2C D F [4
g a
- - [ [ auigg) 2— azag .
a’pc z-t
For z€C and [ €D
=1
:_c-zz'2+czz3+c2z”4+
so that
vy = -5 1 wmememar = g2 [ HFamema
41 D j=0 c D

1 £2=-1 1 £-1 . = ot -
- o £+ £ ARIE(R)AL - oo J;_ FR)E(RIag By, vy, .

on p*, letting m = j - k,

eeiEe) = (3 @)L x& )= ) () ex )i
K== 3 k=1 J ms—o0 K= j=m K k4m

Substituting (2.20) into the integral for y; in (2.19) we have

L]
+ 1 L-m=-1 !
Yo 57 L () X [t a = ) QX -t
£ 2%1 mee®  K=1-m k™ k+m D+ k=1~ kK k+L

A similar computation on D- gives

-11-
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z exterior to D,

by

1 - *
hy --2_"-:1{ h(z)zk laz .

Similar considerations apply to fun.c.ons internal relative to D.

Proposition 3. let x, Q, as described at the beginning of this section, have transforms

€(z), Q(z) and let ¢(z) be the discrete Laplace transform of Q . x. Then

/\
#(z) = Q(z)E(z) , (2.15)

relative to any contour D = DY - D~ with

ot >at sy, o ca <y . (2.16)

Remark. In other words, the "z-transform", ¢(z), of the convolution Q « X is the
external function, relative to D as described, corresponding to the ordinary product
Q(z)§(z) of the discrete Fourier transform of Q = {Qk} and the discrete Laplace

transform, or "z-transform®, £(z), of the sequence x = {xk}.

Corollary 4. For each € > 0 we can find M + (e¢), M - (¢) such that

<neriyt+ ot 1= 1,23,...
1£,0 = 19, x),0

MY -t 2=0,-1,-2,-3,... .

Proof. Let € > 0 be selected and let D, as in Proposition 3, be chosen so that
Y resra sy, Y -e<d <y, Let c=ct-c with
ct=v+e, =y -¢.
Then (2.9), (2.10) give

-3 =1y, _ __1 -1 [ Q(w)E (W)
£ = ST i $(z)z"" 'az - g z g e dwaz .

Since the integral over C~ vanishes for £ = 1,2,3,... and the integral over ct

vanishes for £ = 0,~1,-2,-3,..., the estimates follow immediately.

-10-
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D, then as ¢ + 0 the functions

converge in the Lzlo,zw) norm (z = Izleie, 0 € 8§ < 2x) to functions i. B in that
space (we may also write ;. he Lz(D) unambiguously) such that

h=h+Hh. (2.12)
We refer to ﬁ D and h p 28 the external and internal parts of h, respectively. This
defines a decomposition of 12(p):

12() = £2(0) + E2(p) (2.13)
and the (non-orthogonal, in general) projections - they are readily seen to be that -
P, ¥ defined by
P(h) = h, B(n) =H ,
mapping L2(D) onto £2(D). Ez(D). respectively, may be shown toc be bounded and, clearly,
; +P=1 on 13D . (2.14)
If h is analytic in the exterior of D with square integrable limiting values on
D and if h = ﬁ relative to D, then we will say that h is an external function, or,

simply, that h is external, relative to D. Internal functions are derined in a similar

manner. Thus for external functions

D

for 2z exterior to D while for internal functions

S =_1 [ higla
h(z) = (Fh)(z) = 20 é T
for z in the interior of D. If C 1lies exterior to D and h is exterior relative
to D, then it is also exterior relative to C. If h is exterior relative to C and
analytic in the exterior of D, then h is also exterior relative to D. If h |is

external relative to D then h(z) is the z-transform of the sequence hy, defined, for
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N
: SNy, A2 l2)dz

, N
: - QEIET(gar o Q(z)g (2z)dz
T _-5({+w-z! T 92 f—w:-;—'
e The first integral on the right hand of (3.3) is, for |w| > c*,
‘
N 1 - dz
: '—'-—2f (L)g (¢) £+md‘:
N ar D e
al
s -

o1 ADETR) 1 . RUDETR&

: 4'2 £~ w -1 j (w -g z - ;]dzd; 2% 1 £ w -1
. and therefore, still for |w| > ¢*,
i Q‘{)h) - ! Q(ZIE (g)dr _ I Q(z)E (z)dz _ o
5 0 Zﬂi w -z 2w1 w -2z

since the integrand Q(z)£ (z)/w - z 1is holomorphic on and between D~ and C~. It

DGR
ol

7,
follows that (Q(w)E(w)) = 0, i.e., that
(Qw kg =0, k= 1,2,3,.e0 ,
and we conclude that x,, of which £o(z) is the z-transform, is a unilateral solution of
the homogeneous equation.
Now if £, = 0, k = 0,~1,-2,..., then its z transform is, for |z| > Y,

-k
z .

olz) =ot(z) = § ¢

k=1 k

s b8 v P
PR N

and ¢(z) = ¢ (2) vanishes identically for |z| < Y . Taking b* to have radius a*

large enough so that no singularities of Q(z) 1lie in the set [z| > d* and selecting

d~ so that no singularities of Q(z) are on D~, in the formula

-1
- Q(r) ¢(g)dg
50(2) 2ni £ 2z =~z

AN T

-21=
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the integral over D~ vanishes because ¢(f{) = 0 there and thus

*gag

-
-©-
—

a(z)

= o) leterar | 1
ALY 2n1 I z - ¢ 2ni é+ z

]
[al

for all z exterior to D. For |z| < @ we must have E¢(z) = 0 because
Q(C)-1¢+(C)/(z - %) is holomorphic for |z| » d*, and we conclude, applying Theorem 5,
that £¢(z) is the z-transform of a sequence x¢ such that x; = {0} and Q « x = £.
Then x = xg + x¢ must be the unique unilateral solution of Q , x = £ with the given
initial history x~ and, clearly, §'(z) = §g(z) + e;(z) satisfies (3.2).
The foregoing development of a transform theory for Q o x = £ contains, we believe,
notions and results which may prove interesting and useful in a number of different

connections. For us here, the main point is to be able to supply the

Proof of Theorem 2. We start with the formula (3.2) which, specialized to unilaterally

homogeneous solutions, gives, with D in the statement of Theorem 2 taking the place of

D,

jw- oz)

E (z) = 57— @iz z)~ —
p *°F%

q(z) ’ .
the radius, d, of D satisfying p <d <y .
Next we let C be a circular contour of radius c¢ > d, positively oriented and
centered at z = 0. Since Q, 1is nonsingular, we may suppose c chosen large enough so
that all singular points of Q(z) lie in the region |z| < c. Then, from (2.9), the

coefficient vectors xx, k = 1,2,3,..., of x* are given by

* = 2:1 f £* 212"

‘dz

X + X .

1 +
= 5T g 3 (z)z “laz + =T f gt (z)z K, F X,o

-S

Then, in view of the formula (3.4), we have (1.13) with q(z) as described in (1.14). The

-22-
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+
estimate (1.15) is then immediate since |z| = ¢ on S and |€7(2)] is bounded on s.
The formula (1.16) is an immediate consequence of the calculus of residues, of course.
Let § be a singular point of Q(z) 1lying between C and S. We assume that

Q(z)"1 has a pole of order Vv at the point § so that, with Qo(z) holomorphic near

- Q
-1 -1 -v
Q(z) = Q (z) + ———= + «.. + .
0 z-1 (Z‘C)v

If we let I‘C be a small circle, centered at { and containing no other singular points
k=1_+

of Q(z) in its interior or on I‘; itself, then the residue of 2z § (z) =
zk—1Q(Z)'1q(z) at z =18 is
T =T { 2% 19(2)" 1q(2)az
[4
- Q Q
1 k-1 ~-1 -V
=— | 2 [Q (z) +———+ o0 + ]q(z)dz
2ni T, 0 z -3¢ z - 0)
Q Q
1 k=1 -1 -V
- ‘?'l_i { 2 [-Z_'—E+ een + jq(z)dz
C (z ~ %)
- x-1 1 k-1 22 -v
" =7 @ ,qi) +-2_'EI [———-—24- oo v]q(z)dz
: I'C (z =~ ¢) (z - )
= ;k'1q(;) + 3%? / LT;_EE-T + cee + 2oy “_1] g; (zk-1q(z))dz
) T, ¢ (v-10(z -17)
. - k-1 S G S
- ¢ ,alg) + Qo= (27 alz)) z=C
0 0 2
1 <3 -v d k-1
tomn [ st .o+ —] — (z ‘qlz))az
2mi o 2z - g) w-nw-20-0"2% a?

g

= 0 & q@ + 90 - % + F e

-

-\ k=2
. +...+(T-_——”—I((k-1)...(k-v+1)c q(Z) + «e0 + L

k-1q(v-1)(5))
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k=~ Q

- 10 - v -V (v=1
14 [Q_,q(() + 0,0 (5) ¥ .o 4 o-nT e IC)]

. Q
k-2 ' - 2

s - 087 ale) + v T a0

v

2y
w-nT U8 - (3.5)

T R Ll L

From this it is clear that the solution sequence xy p is a linear combination of

solutions of the form (1.17). It remains only to show that the vectors

2 (l)(

pj = Q_Jq T, j = 1,27000,V, L = 0pe00,v = 1

agree with the description (1.18), of the vectors p appearing in (1.17). A brief
inspection will show that this is the case, provided we can show that

QkQ-j =0, K=0,0ee,3 =1 3= 1,2,0ee,v,
To this end we observe that since

o(z)gz)" 1 =1,

ez H = Vzig ! ¢ ez tazH Y = 0

1,V 1 1

tacz10(z)" " = 9(2) Vo(z)” 1,

+ 200212 HY + ey = 0

etc., etc., the negative indexed terms in the Laurent expansions must be zero. Starting in
each case with the coefficient of the most negative power of 2, we find that the

coefficients are, respectively as the equation is shown above:

Qs Uyt oy D%y Qg YRyt

QoRoyrR98.y * (Y + NQGQ e 20 4 (v NQ0 , + SV + 2000

AR EN]

v+2

- ~

Qyr 2Q,Q , * 2~V + NEQ L+ (V4 NV +2)Q0 oreeer
etc., etc.

and from this it may be seen that

Qo = 00 QR g ™ 0 QQ_ o = 0seeesQyQ = 0

Q‘Q_v =0, Q1Q_w2 = 01"'IQ1Q_2 =0

R0, = 0 Q0 10000 =0 ...

-24-
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and since Q = Q(k)(c)/k! we have the desired result. With this the proot of Theorem 2

is complete and, with it as a tool, we may now turn to the proof of Theorem 1 which was the

original motivation of this paper.
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4. PROOF OF THEOREM 1

With x(t), W(t,s) as in the statement of the theorem, for t > (0 we have

t t (j=nT
x(t) = [ w(t,s)x(s)ds = [ w(t,s)x(s)ds + | w(t,s)x(s)ds
- (j-‘])'r -
where j is the largest integer such that (j - 1)T < t. For £ = 1,2,3,..., we define
xz(r) =x({(2 - 1)T+1), TE€I([O,T] . (4.1)
Then, with t =(j - )T + 71, g§= (L - )T +0, t,0€ (0,T],
T
x;(1) - W3 - DT+ 1,(5 - 1T + o)x,(0)d0
0
j-.1 T
- )Y [ W3 -1DT+T,(2- 1T+ 0)x,(0)do = 0 (4.2)
f=—m
Using the periodicity relation (1.4), we have
Wi(] = T + 7,(2 = T + 0) = W(T,(L - J)T + 0) = Wl_j(TIG)
and (4.2) becomes
T -! T
x5 (1) - g W (t,0)x (0)do - ki_o £ W (1,0)%, , (0)d0 = 0 . (4.3)

1f we now define the operators Po, Pkl K ==1,-2,-3,..., for x € lhzl[ol'r]l by

T

(P) (1) = x(1) = [ Wo(1,0)x(0)do ,
0

T
(B x)(T) = - £ W (1,0)x(0)do ,

it is classical ([5]) that Py 1is bounded and boundedly invertible while the operators
)=1, we see that, with

are all compact. Multiplying by (Pg v

Pkl k = =1,=2,=3,000,

O = (b2 'ry, Qg = I,

-26-
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) 0
D QXkag (5 (Q e x)5) =0, 3= 12.3,... (4.4)
k==

is the expression of (4.3) as a linear recursion equation in the Hilbert space lﬁ[o,T].

From (1.3) it may be seen that (1.9) is true for

p> et
and (1.5) is true with

M= 5//2y
and

Y = e-vT

Thus, if w > v, p < Y and, as required for Theorem 2, (4.4), with @, Xy defined as
above, converges for (z( > p while (1.11) converges for |z| < Y. From the definition of
the operators Py, k = -1,-2,-3,... and the boundedness of (Po)'1, the operators Q.
kK = -1,-2,-3,... are all compact. Therefore
Q(z) = I + Qq(2)

where

-1

9,(z) = § gz*.

K= =00
being uniformly convergent in any region |z| > p + 8, & > 0, is compact. The theorem of
Atkinson ([1),[4)) then applies to show that Q(z) is "regular" in the sense described in

the statement of Theorem 2. Thus Theorem 2 applies and gives the continuation sequence

x* = {xk'k = 1,2,3,..+} in the form (1.13). With ¢ as in the statement of Theorem 2, we

then have (1.15) for p < ¢ 1i.e., with e-BT =g, for B < s, as claimed in Theorem 1.
We turn our attention then to
-1 k=1
X, p = ) Res(Q(z) 'q(z)z™ ') z=C

zez(c,s)
as already discussed in the previous section, where we have noted that the contribution

to xy,p from each singular point § must take the form (3.5). Setting eAT =L, it

-27-




remains only to show that wheﬂ the Xy, F e qﬁ[O,T] are taken to be the successive segments
of a function xp(t), consistent with (4.1), the solution forms shown in (1.17) for the
recursion equaiton correspond to sgolutions of (1.2) having the Floguet structure in

(1.1). We have already struggled hard enough with poles of (z)=1 of higher multiplicity
in Section 3; let us be content here with a simple pole, leaving it to the more dedicated
among us to verify the details in the other cases.

We consider, then, a solution of the form

where p € L&[O,T] with
Qg)p =0 . (4.5)
Let p(T), 0 < p < T, be the functional representation of p. Then (1.18) becomes (cf.

(4.13))

T -1 , T
plt) ~ [ W (t,0)plo)ds - ) &’ [ W (1,0)p(c)do = 0 .
o ° jeo 0

It is evident that 5(1) is continuous on (0,T). Now .

-1 R
pto)y = ) gl [ w_(0,0)p(0)do .
- 3
Js-m 0
oy -
= ) &[] w-T,(3 - DT + a)ple)ds ,
j-- 0
while
~ 0 . T -
P = ) g? [ wo,(3 - T+ o)plo)do
j--ﬂ 0

-1 T -~ ~
=zl ) & wr.(d - DT + O)plords] = tpio) = *T5(0) .
Jm—oo 0

It follows, therefore, that if we define, for t = (j - NT + 1




ol | -~ - -y _—
i S O R LR RO 4 A R SR Nl B L Dt Dok A g o S Y -

x (0) = 7B, 5 =12,

the resulting m-vector function of t is continuous with respect to t. If we now let
p(t) = e 51y, te (0,7 ,

and then let (cf. (4.1))

p{t) = p((j - T + 1) =p(1) ,
we have

pl{t) = p(t + T)

and

j=1 At

xc(t) - g3 %M (e - eX((j-1)T+1)

plt) = e tp(t)
therefore has the formed claimed in Theorem 1 for vc = 1. With this we will regard the

proof of that theorem to be complete.
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\BSTRACT (cont.)

L, 2, u> 0

W(t + T, s+ T) =W(t,s) ,

W(t,s)ll < Qe-“(t-S),t,s real

admits, for each § < u, a decomposition, applicable to a wide class of
solutions x(t) for t 2 0,

x() = Xp(t) + Xg(t)

vhere, for some B = B(B),

bxg(e)1 < Be B, >0

and xp(t) is a linear combination of "Floquet type" solutions
tqextp(t),q(> 0) €2, A e C, Re(A) > -8,

>(t) being a continuous n-vector function such that

p{t + T) = p(t) .

The theorem is proved by converting the above equations to a convolution type

linear recursion equation

0
) QXpey = 0
k=00
in Lﬁ[O,T] and studying this equation by transform methods. In the process

ve examine some general properties of equations

L Xkeq =0

k=00

vithin the same transform framework.
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